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Abstract
Complex networks have been shown to exhibit universal properties, with one of the most

consistent patterns being the scale-free degree distribution, but are there regularities

obeyed by the r-hop neighborhood in real networks? We answer this question by identifying

another power-law pattern that describes the relationship between the fractions of node

pairs C(r) within r hops and the hop count r. This scale-free distribution is pervasive and

describes a large variety of networks, ranging from social and urban to technological and

biological networks. In particular, inspired by the definition of the fractal correlation dimen-

sion D2 on a point-set, we consider the hop-count r to be the underlying distance metric

between two vertices of the network, and we examine the scaling of C(r) with r. We find that

this relationship follows a power-law in real networks within the range 2� r� d, where d is

the effective diameter of the network, that is, the 90-th percentile distance. We term this rela-

tionship as power-hop and the corresponding power-law exponent as power-hop expo-

nent h. We provide theoretical justification for this pattern under successful existing network

models, while we analyze a large set of real and synthetic network datasets and we show

the pervasiveness of the power-hop.

Introduction
During the last decade a wealth of studies have identified an impressive set of universal net-
work properties. Scale-free degree distributions [1–4], the presence of a giant component [5]
and small average shortest paths coexisting with high clustering [6–9] are just some of them.
The presence of scale-free distributions have attracted ideas from fractal theory and self-simi-
larity [10] in the analysis of complex networks. An object is said to be self-similar if it appears
the same in any length scales observed. For example, withM and ρ being the parameters of a
self-similar object (e.g., mass and characteristic length respectively), the latter can be described
through a power-law such as:M = ρδ. Hence, fractal theory can quantify the dimensionality
structure of such complex geometric objects beyond pure topological aspects based on similar
scaling laws, since the exponent δ is the dimension of the scaling law. Furthermore, in contrast
to topological dimensions, the fractal dimensions can take non-integer values allowing us to
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describe in greater detail the space that the object of interest fills [10]. In the case of complex
networks these various dimensions carry information about many interesting underlying prop-
erties such as information diffusion and percolation [11–14]. While for networks embedded in
a metric space the definitions can be applied almost unchanged [15, 16] this is not the case for
the majority of the complex networks we study.

Our work is inspired by the definition of the fractal correlation dimension D2 on a cloud of
points S. In particular, with C(r) being the fraction of pairs of points from S that have distance
smaller or equal to r, S behaves like a fractal with intrinsic fractal dimension D2 in the range of
scales r1 to r2 iff:

CðrÞ / rD2 r1 � r � r2 ð1Þ

An infinitely complicated set S would exhibit the above scaling over all the possible ranges
of r. However, real objects are finite and hence, Eq (1) holds only over a specific range of scales.
For example, a cloud of points uniformly distributed in the unit square, has intrinsic dimension
D2 = 2, for the range of scales [rmin, 1], where rmin is the smallest distance among the pairs of S.

In the case of a complex network the set S is simply the set of vertices V. Eq (1) can be
applied unchanged for networks embedded in a metric space where any of the distance metrics
of the space (e.g., Euclidean distance) can be utilized. Motivated by definition (1) we explore
the following power-hop conjecture, which avoids the limitation to only spatially embedded
networks. With C(r) being the fraction of pairs of nodes within hop-count r and d the 90-th
percentile diameter the power-hop conjecture states:

Conjecture 1 (power-hop conjecture) Given a network G ¼ ðV; EÞ, C(r) follows a power-
law relationship with r, in the range [2, d], i.e., C(r)/ rh, 2� r� d.

The above conjecture essentially implies that the plot of C(r) versus r in log-log scale will be
a straight line with slope equal to the power-hop exponent h. Since, real networks are finite
objects we expect the above scaling to hold only over a specific range—similar to the scale-free
degree distribution that holds at the tail of the distribution in the majority of the cases [5]. In
particular, we conjecture that this range begins at r = 2 and up to r = d. To reiterate, d is the
effective diameter, that is, the distance within which 90% of the node pairs are. The contribu-
tion of this study is twofold. First, the empirical analysis of a large and diverse collection of net-
work datasets (both real and synthetic) supports the power-hop conjecture. In particular,
our results showcase the pervasiveness of this pattern. Of course, different types of networks
exhibit different power-hop exponent. Second, we theoretically prove that under the success-
ful Kronecker network model [17] this pattern is justified and preserved. We would like to note
here that Faloutsos et al. [4] have shown that, for the Internet topology at both the autonomous
system and router level, there is a power-law relationship between the hop distance r and the
fraction of nodes within distance r. In our work we provide strong empirical evidence that this
is also true in a diverse set of real networks (not only the Internet) within specific scales, sup-
porting further the above conjecture.

Materials and Analysis
Materials: For our analysis we use a large collection of publicly available network datasets. Table 1
presents basic meta-data information for the networks, while Table 2 provides some statistics
about these datasets. For each of the networks we calculate the all-pairs shortest paths and com-
pute C(r) as a function of the hop-count r. We then provide a linear fit log C(r) = α + β � log r,
where essentially β = h.

We also build synthetic network datasets using two well-studied network formation models,
namely, the Barabási-Albert (BA) preferential attachment [1] and the stochastic Kronecker

Power-Hop: A Pervasive Observation for Real Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0151027 March 14, 2016 2 / 11

National Science Foundation IIS-1247489, http://
www.nsf.gov/awardsearch/showAward?AWD_ID=
1247489 (also National Institute of Health NIH
1R01GM108339-1) (CF); National Science
Foundation CNS-1314632, http://www.nsf.gov/
awardsearch/showAward?AWD_ID=1314632 (CF);
National Science Foundation IIS-1408924, http://
www.nsf.gov/awardsearch/showAward?AWD_ID=
1408287 (CF); and Defense Advanced Research
Projects Agency Contract no. W911NF-09-2-0053
(ARL: CTA-INARC), http://www.ns-cta.org (CF).
Konstantinos Pelechrinis0 work was partially
supported by the Army Research Office Young
Investigator Award #W911NF-15-1-0599 (67192-NS-
YIP). The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1247489
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1247489
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1247489
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1314632
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1314632
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1408287
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1408287
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1408287
http://www.ns-cta.org


graph model [17] that has been shown to be able to reconstruct many of the (static and tempo-
ral) patterns that real network datasets exhibit. The BA model has two parameters that we can
tune: the number of edgesm that every new node generates in the network and the power w of
the preferential attachment (e.g., for w = 1 we have a linear preferential attachment). In brief,
with BA model at every iteration a new node i is generated. This node further generatesm new
edges whose one end is attached to i while the other end is randomly attached to an already
existing nodes j in the network, with a probability proportional todegw

j , where degj is j’s

degree. The highest the degree of a node the more chances it has to acquire more edges; “the
rich gets richer”. Furthermore, a larger value for w pronounces this phenomenon leading to the
generation of the “hub” nodes that attract the majority of the edges. In our experiments, we
used the following sets of parameters: (m, w) = {(1, 0.5), (1, 0.65), (1, 0.9), (1, 1), (2, 0.5), (2,
0.65), (2, 0.9), (2, 1)}. The seed network for the BA model consists of two connected nodes. For
every parameter setting we generated 100 topologies with 10,000 nodes and calculated h, d and
the R2 of the linear fit.

The stochastic Kronecker graph model accepts as input a probability matrix P1 2 PN1�N1

and an integer value k. P1 describes a matrix that represents a small initiator network G, with

Table 1. Network dataset meta-information. Basic information about the relationships that the real network datasets used for our power-hop analysis rep-
resent. For every network we define its nodes and edges, as well as its type (i.e., directed vs undirected). For the collaboration networks, HEP-TH captures
the collaborations between high energy theoretical physicist, while the GR-QC captures the collaborations between physicist working on general relativity
and quantum cosmology. Furthermore, the urban networks capture consecutive visitations by Foursquare users to venues in New York City and San Fran-
cisco respectively.

Network Dataset Nodes Edges Type

Technological Power grid Power stations Physical connections Undirected

Internet AS Autonomous Systems Physical connections Undirected

Web Web pages Hyperlinks Directed

Bio/Urban Yeast Protein Interactions Proteins Protein interactions Undirected

Foursquare-NYC Urban Urban venues Consecutive visitations Directed

Foursquare-SF Urban Urban venues Consecutive visitations Directed

Social Gowalla People Friendships Undirected

Collaboration-HEP-TH Scientists Collaboration Undirected

Collaboration-GR-QC Scientists Collaboration Undirected

Facebook People Friendships Undirected

doi:10.1371/journal.pone.0151027.t001

Table 2. Pervasiveness of the power-hop scaling. Basic information about the different real network datasets used for our power-hop analysis. For
every network we also provide the calculated h and the corresponding R2 of the fit, as well as the effective diameter d.

Network Type Source jVj jEj h R2 d

Technological Power grid [6] 4,941 6,594 2.48 0.99 27

Internet AS [18] 6,474 13,895 2.67 0.97 5

Web [19] 281,903 2,312,497 2.1 0.98 10

Bio/Urban Yeast Protein Interactions [20] 1,871 2,277 3.01 0.99 9

Foursquare-NYC Urban S1 Text 25,295 84,646 3.31 0.99 8

Foursquare-SF Urban S1 Text 7,944 27,629 3.16 0.99 7

Social Gowalla [21] 196,591 950,327 4.00 0.97 6

Collaboration-HEP-TH [22] 9,877 25,998 3.8 0.98 8

Collaboration-GR-QC [18] 5,242 14,496 3.51 0.99 8

Facebook [23] 63,731 817,035 3.9 0.96 6

doi:10.1371/journal.pone.0151027.t002
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the entry pij describing the probability of the edge (i, j). Using P1 we compute its kth Kronecker

power (see S2 Text) and obtain matrix Pk ¼ P�k
1 . Then for every pair of nodes (u, v) we include

an edge with probability pku, v and the corresponding network is G
k. In our experiments, we use

k = 5 and N1 = 5, while pij = γ, 8 i, j{1, . . ., N1} with γ 2 [0.3, 0.5].
Analysis: Can we prove under realistic assumptions that networks will exhibit the behavior

expected from the power-hop conjecture? Fast forwarding, the answer is yes and for our the-
oretical analysis we rely on the Kronecker model. The reason for using the latter, is that the
Kronecker model (being a superset of the successful Recursive Matrix model [24]) has been
shown to be able to match a number of static and time-evolving properties of networks [17].
Hence, with this model being a realistic assumption, we are interested in examining on whether
it exhibits the power-hop scaling behavior observed in real network datasets. Furthermore,
its mathematical tractability allows for analytical derivations. In particular, we have the follow-
ing lemma, which we prove in the supplementary materials (see S3 Text):

Lemma 1 Let M be a binary m ×mmatrix that describes the seed network G. Then in GK, the
number of pairs reachable in r hops is cKr , where cr is the number of pairs reachable in r hops in G.

Simply put, the above lemma says that Kronecker multiplications will retain the power-
hop scaling. As a consequence of Lemma 1, if the initial network G has power-hop exponent
h1, then after K Kronecker products/iterations, the resulting network will have a power-hop
exponent Kh1. While Lemma 1 considers the simple case of binary seed matrix, the following
Lemma considers the generic case of stochastic Kronecker model (see S4 Text for the proof)

Lemma 2 Let M be a seed matrix, and let the edges of G be generated based on the probabili-
ties in M, and GK generated based on M�K. Then in GK, as K!1, the expected number of
pairs reachable in r hops approaches cKr , where cr is the expected number of pairs reachable in r
hops in GK.

Before describing our experimental results in detail we would like to emphasize here on
some practical details for estimating the power-hop exponent. In particular, the formal defi-
nition of D2 is the following:

D2 ¼ lim
r!0

logCðrÞ
log r

ð2Þ

Theoretically, this limit provides the slope of the straight-line dependence between logC(r)
and logr. Nevertheless, given that any practical/real dataset is finite, the above scaling holds
only over a small range for r and the correlation dimension is computed from the slope over
this range [10]. This is actually the case in our network datasets as well and we are following
the literature on the practical fractal dimensions [10] to compute the power-hop exponent.

Results
Next we present the experimental results obtained from the real and synthetic datasets.

Real network datasets:We begin by analyzing various network datasets that represent dif-
ferent types of systems. In particular, we have analyzed technological (e.g., power grid, the
Internet and the web-graph), social (e.g., friendship networks—Facebook, Gowalla—and co-
authorship networks), urban (e.g., associations between locations based on human mobility
patterns) and biological networks. Our results are presented in Table 2, where we also provide
a pointer to the data sources. Note here that, for networks that are not connected, we analyze
the largest-connected component.

As we can see the pattern is pervasive and the linear fit is very good for all of the cases (R2 >

0.96) even for those with networks with large effective diameter. Fig 1 depicts the
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Fig 1. power-hop scaling for our network datasets. The power-hop conjecture appears to be true for all
the network datasets we examined despite the fact that they capture completely different network dynamics.

doi:10.1371/journal.pone.0151027.g001
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corresponding dependencies between C(r) and r for all the networks in log-log scale. Only the
range [2, d] is plotted for clarity.

Finally, we would like to emphasize here that the power-hop exponent of networks of the
same type are very similar and are nicely ordered on the real number line (see Fig 2). For exam-
ple, social networks have a power-hop exponent roughly in the range 3.5–4, while technolog-
ical networks have a much smaller exponent, that is, in the range 2–2.5. The only biological
network in our datasets (a protein-protein interaction network) also exhibits a different expo-
nent (h� 3), while the urban networks examined exhibit exponents in the range 3–3.5. The lat-
ter, while capturing aggregated urban mobility patterns, have been created from and affected
by the underlying social network layer. Furthermore, interactions within a city have been
described through biological metaphors in both classical and recent studies [25–29]. Therefore,
it might be logical that the power-hop exponent of our urban network datasets is close to
that of both the biological and social networks. We would like here to emphasize on the fact
that the groups depicted in Fig 2 are not clusters in the formal notion of unsupervised learning
literature. The main point is that the power-hop exponent h of the networks of different
types are ordered on the real line. In order to perform a robust cluster analysis one would need
access to a much larger number of network datasets. Nevertheless, our results in this work
show that h can potentially be used to classify/identify the type of a recorded network. Further-
more, given the consistency of the values for the power-hop exponent, network models that
try to explain the link formation for different types of networks could potentially be evaluated
on the basis of being able to reproduce this scaling as well.

Synthetic network datasets—BAmodel:Now we turn our attention to the synthetic data-
sets created using the BA network formation model. Fig 3 presents our results. In particular,
we depict the box plots for the power-hop exponent h computed over all the networks gener-
ated with a given set of parameters. As per the power-hop conjecture, h is computed over the
range [2, d].

As alluded to above, we examined networks generated with linear and sub-linear preferen-
tial attachment probabilities. We did not examine super-linear growth of the preferential
attachment probability, since this leads to networks with extremely small diameter that do not
allow us to obtain reliable statistical results due to the limited range between 2 and d. For each
case we also considered two different scenarios, where each new node in the network generates
one or two new edges. The effective diameter for each scenario is provided in the table at the

Fig 2. power-hop exponents of various types of networks. The power-hop exponent h of similar types
of networks cluster well together. Interactions within a city have been described through biological metaphors
and hence, it is logical that the exponents of our urban network datasets is close to that of the biological
networks.

doi:10.1371/journal.pone.0151027.g002
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left part of Fig 3 with the corresponding variance in parenthesis. Note here that, the effective
diameter exhibits very small variance over the different network instances generated by the
same model parameters. Our results for h are further depicted at the box plots in Fig 3. Note
here that, the quality of the power-law fit was excellent for all cases (R2 > 0.98 in all networks).
As we can see, if we focus on a specific value for the number of new edges added at each step
(i.e., fixedm), linear (w = 1) preferential attachment provides networks with smaller power-
hop exponent as compared to sub-linear preferential attachment (w 2 {0.5, 0.65, 0.9}). In fact,
we performed statistical tests (t test) for every pair of the model parameters and all rejected the
null hypothesis at the significance level α = 0.05 (i.e., that the average power hop exponent h is
the same for the two scenarios). Only exception is the comparison between (1, 0.5) and (1,
0.65) where our hypothesis test cannot reject the null at α = 0.05 (p − value = 0.33). Neverthe-
less, the dynamic range obtained for h whenm = 1 is fairly small and so are the differences,
especially for values of the preferential attachment w that are close to each other. Furthermore,
for a given type of preferential attachment we observe that increasing the number of edges
added by every new node, leads to an increase in the power-hop exponent of the complex
network. We can draw some intuition behind this behavior, if we recall the connection between

Fig 3. power-hop exponent h for two different types of the BA preferential attachment networks. Increasing the number of edgesm that a new node
generates leads to a decrease in the (effective) diameter since more edges can create shortcuts in the network with higher probability. Sub-linear attachment
also leads to higher (effective) diameter, since the hub nodes do not attract the new edges as strongly as in the linear attachment (see table on the left).
Reducing the number of edges while keeping the number of nodes and preferential attachment type constant generates less complex networks (networks
with a smaller power-hop exponent). A similar result occurs if we increase the preferential attachment probability while keeping the number of nodes and
edges constant.

doi:10.1371/journal.pone.0151027.g003
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the power-hop exponent of our network and the fractal correlation dimension of a point-set.
In general, higher dimensionality is associated with higher degree of complexity, and hence, a
larger power-hop exponent can be deemed as a sign of a more complex network structure.
In the case of the BA model, larger w leads to networks with well defined attractors, which fur-
ther give raise to a well-defined structure (e.g., a few hubs and every other vertex is connected
to these few central entities). A well-defined structure exhibits regularity and less complexity
and hence, its dimensionality (which in our case is captured through h) is lower. Conversely,
when w is small, there are not clear attractors that emerge, and the structure is less clearly
defined, requiring in a sense more details/features to describe the system in detail (i.e., higher
dimensionality). Similarly, largerm leads to more complex topologies, since for a given w there
are more chances for a node to emerge as an attractor.

Synthetic network datasets—Kronecker model: Finally, we perform experiments using the
stochastic Kronecker graph formation model. To reiterate, being a superset of the successful
recursive matrix network model [24], the Kronecker model is one of the most successful net-
work formation models that can recover many of the properties of real networks [17]. Hence,
we are interested in examining whether Kronecker networks obey the power-hop conjecture.
In particular, as alluded to above, we choose uniformly at random the value for γ in the range
[0.3, 0.5]. Different values of γ will provide networks with different diameters (generally speak-
ing larger γ provides networks with smaller diameter). As with the real network datasets and
the synthetic datasets obtained from the BA model, the power-law fit Eq (1) is excellent again,
with an R2 > 0.95 (see S5 Text). The left part of Fig 4 depicts a scatter plot of the fractal dimen-
sion for each obtained network and the corresponding effective diameter. As we can notice
there is a clear decreasing trend, which is also in agreement with our results from the BA net-
work model. In the same figure we plot a linear fit with slope −0.07 (p-value< 0.05) and R2 =
0.77. Furthermore, it is interesting to note that networks with smaller diameter exhibit a higher
variance in the corresponding fractal dimension (somehow evident in the results from the real
datasets as well). However, it is not clear whether this is an intrinsic phenomenon or just an
artifact of the larger sample of networks with smaller diameter. Fig 4 (right part) presents a
scatter plot of the R2 of the calculated fractal dimension as a function of the effective diameter.
The reason for presenting these results stems from the fact that when δ is small, one can argue

Fig 4. power-hop exponent for Kronecker networks. The networks generated with the Kronecker network model exhibit effective diameters that span a
large range. The linear fit obtained for the h of every network exhibits large R2 values even for larger δ.

doi:10.1371/journal.pone.0151027.g004

Power-Hop: A Pervasive Observation for Real Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0151027 March 14, 2016 8 / 11



that it is easier to fit a line through the smaller number of points. Nevertheless, our results
show that when the effective diameter is large, the R2 value is extremely high as well, further
strengthening our observations for a universal network pattern. Finally, it is interesting to note
that even the worst fit (which appears for the smallest effective diameter observed) is still fairly
good (R2 = 0.9327).

Finally, we experimentally demonstrate Lemma 1. We start with a seed matrix that describes
the network depicted in the left part of Fig 5. This is essentially a network that exhibits a linear
relationship between logC(r) and logr with a slope of h1 = 0.6021 and effective diameter d = 5.
We then compute the kth Kronecker power, k 2 {2, 3, 4}, and experimentally obtain the number
of pairs of nodes within distance r 2 {1, . . ., d} for each network. The top-right part of Fig 5
presents this experimentally obtained number versus the theoretical one expected from
Lemma 1. As we can see all points fall on the y = x line, which demonstrates the validity of
Lemma 1 in this example. The bottom left part of Fig 5 presents the corresponding power-
hop exponent h of each network obtained. As we can see again, the power-hop exponent
expected as a consequence of Lemma 1 is very close to the one computed from the actual net-
works. The small difference between the theoretical and experimental values can be attributed
to the fact that even though the R2 value of the linear fit for h is high, it is never perfect (i.e., 1).
Finally, the bottom right part of Fig 5 depicts the actual scaling behavior of the networks after
each Kronecker multiplication.

Fig 5. Numerical demonstration of Lemma 1. Using a seed network with large enough diameter to obtain statistically meaningful results (top left figure), we
validate Lemma 1. As we can see at the top right figure the number of pair of nodes within distance r expected from Lemma 1 is equal to the one computed
from the networks. Furthermore, the computed power-hop exponent is very close to the one expected from our lemma as well (bottom left figure). Finally,
the actual scaling behavior for the networks after each Kronecker iteration are presented at the bottom right figure.

doi:10.1371/journal.pone.0151027.g005
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Discussion
As aforementioned there is a volume of work in the literature that studies the dimensionality of
networks (e.g., [11–15, 30–32]—with the list of course not being exhaustive). This body of litera-
ture studies the theoretical properties (e.g., phase transitions) and asymptotic behavior of the
complex networks. However, despite the significant contribution of these studies, real networks
are finite. Therefore, in our study we are more interested in the practical extensions of the exist-
ing literature, by analyzing and studying real-network datasets. Inspired by the fractal correla-
tion dimension D2 defined over a point-set, we examine the scaling behavior of the fraction C(r)
of node pairs within hop-count r and pose the power-hop conjecture (see Conjecture 1).

To summarize, the contributions of our work are as follows:

• Pervasiveness: all the real networks we studied support the power-hop conjecture, that is,
they exhibit excellent fit for a power-law C(r)/ rh (see Table 2)

• Analysis: we theoretically proved that one of the most realistic models, the Kronecker model,
automatically leads to power law behavior of the power-hop conjecture, given mild initial
conditions (see Lemma 1)

Furthermore, our empirical results (Fig 2) show that the value of the power-hop exponent
is related to the type of network. While different networks exhibit different power-hop expo-
nent, networks of the same type have similar exponents.
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